
Smart Contract Audit Report

p00ls

16th of August 2022

https://byterocket.dev

Smart Contract Audit Report - p00ls

Contents
1. Preface 3

2. Manual Code Review 4

2.1 Severity Categories 4

2.2 Summary 5

2.3 Findings 6

2.4 Gas Optimizations 14

2.5 Informational Notes 15

3. Protocol/Logic Review 18

4. Summary 19

Disclaimer
As of the date of publication, the information provided in this report reflects the presently held
understanding of the auditor’s knowledge of security patterns as they relate to the client’s
contract(s), assuming that blockchain technologies, in particular, will continue to undergo
frequent and ongoing development and therefore introduce unknown technical risks and flaws.
The scope of the audit presented here is limited to the issues identified in the preliminary
section and discussed in more detail in subsequent sections. The audit report does not address
or provide opinions on any security aspects of the Solidity compiler, the tools used in the
development of the contracts or the blockchain technologies themselves, or any issues not
specifically addressed in this audit report.

The audit report makes no statements or warranties about the utility of the code, safety of the
code, suitability of the business model, investment advice, endorsement of the platform or its
products, the legal framework for the business model, or any other statements about the
suitability of the contracts for a particular purpose, or their bug-free status.

To the full extent permissible by applicable law, the auditors disclaim all warranties, express or
implied. The information in this report is provided “as is” without warranty, representation, or
guarantee of any kind, including the accuracy of the information provided. The auditors hereby
disclaim, and each client or user of this audit report hereby waives, releases and holds all
auditors harmless from, any and all liability, damage, expense, or harm (actual, threatened, or
claimed) from such use.

16th of August 2022 - byterocket.com Page 2 of 19

Smart Contract Audit Report - p00ls

1. Preface
The developers of p00ls contracted byterocket to conduct a smart contract audit of
their creator token suite. p00ls “enables creators and brands to create the tokens of
their worlds. [They] launch and distribute it to their communities”.

The team of byterocket reviewed and audited the above smart contracts in the course of
this audit. We started on the 28th of July and finished on the 16th of August 2022.

The audit included the following services:
● Manual Multi-Pass Code Review
● Protocol/Logic Analysis
● Automated Code Review
● Formal Report

byterocket gained access to the code via a public GitHub repository. We based the
audit on the main branch’s state on July 27th, 2022 (commit hash
ada109e6f47aa4f682c3bf4eebba53412d8ad663). The updated version was provided to
us via multiple new commits to the repository, addressing our findings. The last and most
recent commit hash that we audited is
8c50460480757b52f377d2ab98430e4b155a4372.

16th of August 2022 - byterocket.com Page 3 of 19

https://github.com/p00ls/contracts
https://github.com/p00ls/contracts/tree/ada109e6f47aa4f682c3bf4eebba53412d8ad663
https://github.com/p00ls/contracts/tree/8c50460480757b52f377d2ab98430e4b155a4372

Smart Contract Audit Report - p00ls

2. Manual Code Review
We conducted a manual multi-pass code review of the smart contracts mentioned in
section (1). Three different people went through the smart contract independently and
compared their results in multiple concluding discussions.

The manual review and analysis were additionally supported by multiple automated
reviewing tools, like Slither, GasGauge, Manticore, and different fuzzing tools.

2.1 Severity Categories

We are categorizing our findings into four different levels of severity:

Non Critical

Does not impose immediate risk but is relevant to security
best practices.

Includes issues with
- Code style and clarity
- Versioning
- Off-chain monitoring

Low Severity

Imposes relatively small risks or could impose risks in the
long-term but without assets being at risk in the current
implementation.

Includes issues with
- State handling
- Functions being incorrect as to specification
- Faulty documentation or in-code comments

Medium Severity
Imposes risks on the function or availability of the protocol
or imposes financial risk by leaking value from the protocol if
external requirements are met.

High Severity

Imposes catastrophic risk for users and/or the protocol.

Includes issues that could result in
- Assets being stolen/lost/compromised
- Contracts being rendered useless
- Contracts being gained control of

16th of August 2022 - byterocket.com Page 4 of 19

https://github.com/crytic/slither
https://gasgauge.github.io
https://github.com/trailofbits/manticore

Smart Contract Audit Report - p00ls

2.2 Summary

On the code level, we found 11 bugs or flaws, with 11 of them being fixed in a
subsequent update. Prior to this, there have been 8 non-critical, 2 of low severity and 1 of
medium severity findings. Our automated systems and review tools did not find any
additional ones. Additionally, we found 3 gas improvements and 6 informational notes.

The contracts are written according to the latest standard used within the Ethereum
community and the Solidity community’s best practices. The naming of variables is very
logical and understandable, which results in the contract being easy to understand. The
code is very well documented. The developers provided us with a test suite as well as
proper deployment scripts.

16th of August 2022 - byterocket.com Page 5 of 19

Smart Contract Audit Report - p00ls

2.3 Findings

[FIXED] [MEDIUM SEVERITY] M.1 - Insufficient AccessControl check in hasRole
function
Location: P00lsCreatorRegistry.sol - Line 110

Description:
The hasRole function is overwritten to use the NFT owner mechanism. However, the
hasRole function returns true for an address that holds the DEFAULT_ADMIN_ROLE but
does not hold the owner-NFT.
Even if there are no plans to grant multiple addresses the DEFAULT_ADMIN_ROLE,
maintenance errors can occur and a defensive programming style should be promoted.
The check is insufficient because the function defaults to the original hasRole
implementation in case the owner check fails.

The check is implemented as follows:

return role == DEFAULT_ADMIN_ROLE && owner() == account ||

super.hasRole(role, account);

Let's say the address account holds the DEFAULT_ADMIN_ROLE but does not hold the
corresponding owner-NFT. Therefore, the check evaluates to:

role == DEFAULT_ADMIN_ROLE && owner() == account || super.hasRole(role, account)

^^^^^^^^^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^ ^^^^^^^^^^^^^^^^^^^^^^^^^^^^

true && false || (not yet evaluated)

^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^

false || true

^^

true

Recommendation:
There are two possible paths to handle this problem.

1. Make sure that there is only ever one address holding the DEFAULT_ADMIN_ROLE

and that this address also always holds the owner-NFT. This requires overriding
the transferOwnership and _grantRole functions to forbid transferring the
owner-NFT and granting the DEFAULT_ADMIN_ROLE. Then implement a
changeAdmin function that transfers the owner-NFT, grants the
DEFAULT_ADMIN_ROLE, and revokes the role from the previous owner-NFT holder.
This ensures that the DEFAULT_ADMIN_ROLE address is also always the owner-NFT
holder.

16th of August 2022 - byterocket.com Page 6 of 19

Smart Contract Audit Report - p00ls

2. Refactor the overridden hasRole function to:
return role == DEFAULT_ADMIN_ROLE ? owner() == account :

super.hasRole(role, account);

This ensures that for the DEFAULT_ADMIN_ROLE only the owner-NFT is checked.

Furthermore, it should be stated that this behavior should be documented accordingly.

Update on the 18th of August 2022:
The developers have fixed the issue according to our recommendation. Now, only the
owner-NFT holder has the DEFAULT_ADMIN_ROLE. For all other roles, the regular access
control mechanism is being used.

[FIXED] [LOW SEVERITY] L.1 - Unmet requirements in overwritten function
Location: P00lsCreatorRegistry.sol - Line 92 - 99

Description:
The ERC721 function _isApprovedOrOwner is expected to fail in case the tokenId does
not exist (see OpenZeppelin's ERC721 implementation). The function is overridden in
various contracts, but does not always fail in case the given tokenId does not exist.

The _isApprovedOrOwner function is implemented as follows:

function _isApprovedOrOwner(address spender, uint256 tokenId)

internal view override returns (bool)

{

return addressToUint256(spender) == tokenId ||

super._isApprovedOrOwner(spender, tokenId);

}

The function returns true in case the spender and tokenId are equal. However, this does
not indicate that the token actually exists.

The same also applies to VestingFactory.sol in line 104 - 111.

Recommendation:
Consider either ensuring that the token actually exists via a
require(super._exists(tokenId)) call prior to the return statement or by switching
the two function calls in the return statement. This works because the
_isApprovedOrOwner function implemented in the OpenZeppelin ERC721
implementation reverts in case the tokenId does not exist.

16th of August 2022 - byterocket.com Page 7 of 19

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/324eda228c07468a0744fc52677e6cebea5dc5c5/contracts/token/ERC721/ERC721.sol#L232

Smart Contract Audit Report - p00ls

Update on the 18th of August 2022:
The developers have fixed the issue according to our suggestion.

[FIXED/ACK] [LOW SEVERITY] L.2 - Missing vanity checks for fees
Location: FeeManager.sol - Line 110 - 116

Description:
The fee variable can be changed via the setFee function. It is, however, not documented
which denomination the fee is expected to be submitted in. Additionally, there is no
upper limit, which could potentially lead to a fee value of > 100%.

Recommendation:
Consider documenting that the fee’s denomination is in ether, i.e. 100% = 1 ether =

1e18. Additionally, consider ensuring that the fee is less than or equal to 100% and
introducing a “public constant MAX_FEE” variable to give users certainty about the
maximum fee that they can expect.

Update on the 18th of August 2022:
The developers have introduced an upper limit for the fee of 100%. However, they only
acknowledge but did not implement a public constant instead of using 1e18 inline. This
could increase users’ trust as the requirement would be more "accessible and
understandable" for them.

[FIXED] [NON CRITICAL] NC.1 - Use of deprecated function
Location: Multiple

Description:
Throughout the codebase AccessControl's _setupRole function is used. The function is
deprecated in favor of _grantRole.

These are the affected occurrences:

● P00lsCreatorRegistry::initialize

● Escrow::constructor

● AcutionFactory::constructor

● VestedAirdrops::constructor

● FeeManager::constructor

● UniswapV2Factory::constructor

Recommendation:
Consider refactoring the _setupRole calls to _grantRole calls.

16th of August 2022 - byterocket.com Page 8 of 19

Smart Contract Audit Report - p00ls

Update on the 18th of August 2022:
Each of the calls to _setupRole in the contracts within scope has been updated to using
_grantRole accordingly.

[FIXED] [NON CRITICAL] NC.2 - Unnecessary use of the payable modifier
Location: Auction.sol - Line 108 - 115

Description:
The address argument is labeled as payable. As no ETH is sent to the address, the
keyword is unnecessary.

Recommendation:
Consider removing the payable keyword if there are no plans to make use of it.

Additionally, you could consider sending ETH to the user in case of WETH (if the
payment token is WETH). This could improve the UX because the user does not need to
manually unwrap the WETH after leaving the auction. In this case, the address would
need to be payable.

Update on the 18th of August 2022:
The payable modifier has been removed.

The developers followed up with us on our recommendation to consider sending ETH
back to the user instead of WETH, which would require either adapting the receive()

function of the contract to cover multiple purposes or using the WETH10 deployment
which is not widely used yet. As this decision has no security implications, we fully leave
the decision to the developers.

[FIXED] [NON CRITICAL] NC.3 - Incorrect version pragma in library
Location: UniswapV2Library.sol - Line 2

Description:
The UniswapV2Library has been refactored with the assumption of Solidity’s builtin
over/underflow protection. However, the version pragma is still set to >=0.5.0, allowing
Solidity versions without the necessary protections.

In the case of this specific project, the pragma is fine because the UniswapV2Factory,
which uses the library, expects a version of at least 0.8.0. However, the pragma should
be adjusted anyway to make the contract correct on its own.

Additionally, the P00lsDAO.sol contract uses a version pragma of ^0.8.2 instead of

16th of August 2022 - byterocket.com Page 9 of 19

Smart Contract Audit Report - p00ls

^0.8.0 like the rest of the contracts.

Recommendation:
Consider updating the version pragma of the library to ^0.8.0 as well.

Update on the 18th of August 2022:
The version pragma of the two contracts has been updated to ^0.8.0 accordingly.

[ACK] [NON CRITICAL] NC.4 - Unspecific Compiler Version Pragma
Location: Multiple

Description:
Avoid floating pragmas for non-library contracts.

While floating pragmas make sense for libraries to allow them to be included with
multiple different versions of applications, it may be a security risk for application
implementations. A known vulnerable compiler version may accidentally be selected or
security tools might fall back to an older compiler version ending up checking a different
EVM compilation that is ultimately deployed on the blockchain.

Recommendation:
Consider pinning a concrete compiler version, as this is the best practice.

Update on the 18th of August 2022:
The developers acknowledge our finding. The developers stated that they are making
sure to use the latest version of the compiler. Additionally, we see no immediate security
issues.

[FIXED] [NON CRITICAL] NC.5 - Undocumented API change
Location: UniswapV2Library.sol - Line 18 - 26

Description:
The internal API of the forked UniswapV2Library has been changed inside the pairFor

function. While the original function always returns the (pre-calculable) pool address,
even if the pool does not exist yet, the forked version returns the zero address in case
the pool does not exist.

// Inside the forked UniswapV2Library::pairFor function.

return Address.isContract(predicted) ? predicted : address(0);

16th of August 2022 - byterocket.com Page 10 of 19

Smart Contract Audit Report - p00ls

Due to this change, the UniswapV2Library::getReserves function also changes its
behavior compared to the original.

// Inside the forked UniswapV2Library::getReserves function.

(uint reserve0, uint reserve1,) = IUniswapV2Pair(pairFor(factory,

tokenA, tokenB)).getReserves();

In case a token pair does not exist, the original UniswapV2 would fail due to calling
the token pair’s pre-calculated address, while the forked version fails due to calling
the zero address.

This behavior change is further exposed via the external API inside the
UniswapV2Router02 functions.

Recommendation:
The overall aim of the Uniswap fork should be to not introduce unnecessary API changes.
It is therefore suggested to change the UniswapV2Library::pairFor function to always
return the pre-calculated address. Afterward, the UniswapV2Factory::getPair function
would need to be adjusted to only return the pair address if it exists already, and
otherwise return the zero address.

Update on the 18th of August 2022:
The developers have updated the UniswapV2Library::pairFor and
UniswapV2Factory::getPair functions to be functionally equivalent to the original
Uniswap implementation.

[FIXED] [NON CRITICAL] NC.6 - Unnecessary require statement
Location: UniswapV2Factory.sol - Line 38 - 46

Description:
The createPair function starts with the following three lines:

require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');

(address token0, address token1) = UniswapV2Library.sortTokens(tokenA,

tokenB);

require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');

16th of August 2022 - byterocket.com Page 11 of 19

Smart Contract Audit Report - p00ls

However, the UniswapV2Library::sortTokens function includes both checks already:

function sortTokens(address tokenA, address tokenB) internal pure

returns (address token0, address token1) {

require(tokenA != tokenB, 'UniswapV2Library: IDENTICAL_ADDRESSES');

(token0, token1) = tokenA < tokenB ? (tokenA, tokenB) : (tokenB,

tokenA);

require(token0 != address(0), 'UniswapV2Library: ZERO_ADDRESS');

}

Note that while the original version includes the require statements, it does not use
the library's sortTokens function but rather sorts the tokens in-line:

require(tokenA != tokenB, 'UniswapV2: IDENTICAL_ADDRESSES');

(address token0, address token1) = tokenA < tokenB ? (tokenA, tokenB) :

(tokenB, tokenA);

require(token0 != address(0), 'UniswapV2: ZERO_ADDRESS');

The require statements inside the createPair function can therefore be removed.

Recommendation:
Consider removing the unnecessary require statements inside the createPair function
to reduce gas costs.

Update on the 18th of August 2022:
The developers have removed the require statement according to our
recommendation.

[ACK] [NON CRITICAL] NC.7 - Functions are susceptible to MEV
Location: Multiple

Description:
The following functions are MEV-able if run through the public mempool and should
therefore only be run through a private mempool like Flashbots:

● - AuctionFactory::finalize

● - FeeManager::redistributedFees

Note: This finding is just listed as a piece of information. There is no fix required.

Update on the 18th of August 2022:
The developers have acknowledged this informational finding.

16th of August 2022 - byterocket.com Page 12 of 19

Smart Contract Audit Report - p00ls

[ACK] [NON CRITICAL] NC.8 - Inconsistent use of safe- vs non-safe variants
Location: AuctionFactory.sol - Line 87 - 88

Description:
OpenZeppelin’s SafeERC20::safeApprove function should be used whenever the exact
ERC20 token to approve is unknown during development time and/or the ERC20 token
does not follow the ERC20 specification the same way as most ERC20 tokens do.

The current codebase uses the SafeERC20::safeApprove function even if the token is
known to work fine with the standard ERC20::approve function (e.g.
FeeManager::_liquidateAllLP) with the exception inside the
AuctionFactory::finalize function:

payment.approve(address(router), type(uint256).max);

token.approve(address(router), type(uint256).max);

Recommendation:
For the sake of consistency and increased security during future development, use
OpenZeppelin’s SafeERC20::safeApprove function inside the Auction::finalize

function.

Update on the 18th of August 2022:
The developers have refactored the non-safe approval calls to their safe counterparts
accordingly.

16th of August 2022 - byterocket.com Page 13 of 19

Smart Contract Audit Report - p00ls

2.4 Gas Optimizations

[Gas Optimization] GO.1 - Use msg.sender instead of owner() if applicable
Location: Throughout the project

Description:
If a function verifies that the msg.sender is the address returned by owner(), it saves gas
to use msg.sender from there on instead of recalling the owner() function.

The affected occurrences are:
● RegistryOwnable::transferOwnership

● RegistryOwnableUpgradeable::transferOwnership

● VestingFactory::transferOwnership

Recommendation:
Consider making use of msg.sender instead of calling the owner() functions in the
applicable cases.

[Gas Optimization] GO.2 - Optimize loop to be more efficient
Location: UniswapInterfaceMulticall.sol - Line 29 - 36

Description:
The loop is implemented as follows:

for (uint256 i = 0; i < calls.length; i++) { /*...*/ }

A more gas optimized version is:

uint len = calls.length;

for (uint256 i; i < len; ++i) { /*...*/ }

Note: This optimization is invalid if the new --via-ir compiler pipeline is used.

Recommendation:
Consider optimizing the for-loop to be more efficient in terms of its gas usage.

16th of August 2022 - byterocket.com Page 14 of 19

Smart Contract Audit Report - p00ls

[Gas Optimization] GO.3 - Functions can be external instead of public
Location: P00lsTokenXCreatorV2.sol - Line 66 + 76

Description:
The functions are never called internally in the contract:

● P00lsTokenXCreatorV2::onEscrowRelease

● P00lsTokenXCreatorV2::convertToAssetsAtBlock

Recommendation:
Consider changing the functions visibility from public to external in order to save
some gas.

16th of August 2022 - byterocket.com Page 15 of 19

Smart Contract Audit Report - p00ls

2.5 Informational Notes

[Informational] IN.1 - Inconsistent Code Style in P00lsTokenCreator::claim
Location: P00lsTokenCreator.sol - Line 43 - 52

Description:
The claim function checks that the account did not claim tokens yet via:

require(!__claimedBitMap.get(index), "P00lsTokenCreator::claim: drop

already claimed");

Given the code style used throughout the project, the P00lsTokenCreator::isClaimed

function should maybe be public and then using that function instead of the inlined
access via __claimedBitMap.get(index) statement.

[Informational] IN.2 - Inconsistent Usage of uint vs uint256 in UniswapV2Pair
Location: UniswapV2Pair.sol

Description:
While the project uses the uint256 type declaration, the UniswapV2 forked codebase
uses uint. This is fine, but the variable UniswapV2Pair::MINIMUM_LIQUIDITY was
changed from uint to uint256.

In order to stay consistent, it is suggested to change the declaration again to uint256.

[Informational] IN.3 - Files containing more than one contract
Location: Multiple

Description:
For clarity’s sake it would make sense to split the VestingFactory.sol and the
RegistyOwnable.sol files into multiple sub-files to contain a single contract in each of
them.

● VestingFactory.sol→ VestingFactory.sol + VestingTemplate.sol

● RegistyOwnable.sol→
○ → RegistyOwnable.sol + RegistyOwnableUpgradeable.sol

16th of August 2022 - byterocket.com Page 16 of 19

Smart Contract Audit Report - p00ls

[Informational] IN.4 - Unnecessary use of the virtual keyword
Location: VestingFactory.sol

Description:
The owner, transferOwnership, cliff, and delegate functions are declared virtual,
although there is no apparent reason to do so.

[Informational] IN.5 - Typing Errors
Location: Multiple

Description:
● AuctionFactory contract documentation

○ Otherwize → Otherwise
● VestedAirdrops::release

○ reverts it proof is invalud → reverts if proof is invalid
● FeeManager::redistributedFees

○ there might me more… → there might be more…
● Escrow::_configure

○ if previous is schedule is… → if previous schedule is…

[Informational] IN.6 - Unused Modifier
Location: P00lsTokenXCreatorV2.sol - Line 20 - 23

Description:
The onlyOwner modifier in the P00lsTokenXCreatorV2 is never used within the contract
and could therefore be removed.

16th of August 2022 - byterocket.com Page 17 of 19

Smart Contract Audit Report - p00ls

3. Protocol/Logic Review
Part of our audits are also analyses of the protocol and its logic. The byterocket team
went through the implementation and documentation of the implemented protocol.

The repository itself contained tests and documentation. We found the provided unit
tests that are coming with the repository execute without any issues and cover the most
important parts of the protocol.

According to our analysis, the protocol and logic are working as intended, given that any
findings with a severity level are fixed. When making use of the Mainnet forking method,
we were able to successfully execute the protocol.

We were not able to discover any additional problems in the protocol implemented in
the smart contract.

16th of August 2022 - byterocket.com Page 18 of 19

Smart Contract Audit Report - p00ls

4. Summary
During our code review (which was done manually and automated), we found 11 bugs or
flaws, with 11 of them being fixed in a subsequent update. Prior to this, there have been
8 non-critical, 2 of low severity and 1 of medium severity findings. Our automated
systems and review tools did not find any additional ones. Additionally, we found 3 gas
improvements and 6 informational notes.

The protocol review and analysis did neither uncover any game-theoretical nature
problems nor any other functions prone to abuse besides the ones that have been
uncovered in our findings.

In general, there are some improvements that can be made, but we are very happy with
the overall quality of the code and its documentation. The developers have been very
responsive and were able to answer any questions that we had.

16th of August 2022 - byterocket.com Page 19 of 19

